Eleonora Polo, CNR-ISOF When will we run out of metals? Scenarios and perspectives

1 2	1 IA 1A 1 Hydrogen 1 ³ S 6.941 Lithium 21 Jugs ¹	2 IIA 4 9.012 Be Berytium 21 Petri ²	Atom Numb S Electro	iic Atomic Mass ter ymbol Name schon Shalla m Configuration	Element symb	Periodic Table of the Elements 13 14 15 16 IIIA IVA VA VIA 34 4A 5A 6A 5 10 17 14 007 8 0 Berron 21 0 17 14007 8 0 Carbon Nitrogen 23 00000										16 VIA 6A 8 15.999 Oxygen 25 25 25 25 25 25	17 VIIA 7A 9 18.594 Fluorine 23 Pluorine 23 pscs/25	18 VIIIA 8A 2 4.003 Helium 2 b ¹ 10 20.180 Neon 12 Neon 12 Neon 12 Neon
3	11 22.990 Na Sodium 281 240	12 24.305 Mg Magnesium 28.2 Dwth ²	3 1118 38	4 IVB 4B	5 VB 5B	6 VIB 6B	7 VIIB 7B	8	9 	10	11 IB 1B	12 IIB 2B	13 26.962 Al Aluminum 243 Pech ² te ¹	14 28.086 Silicon 284 Dects/292	15 30.974 P Phosphorus 283 picor2a ²	16 SZOGE Sulfur 200 DHD2 ² 30 ⁴	17 35.453 Chlorine 287 psch2a2	18 39.548 Argon 288 MdS ² 3/ ⁶
Period	19 39,096 K Potassium 2881 (Ada ¹	20 40.078 Ca Calcium 2002 2002 2002	21 44.95 Sc Scandium 2892 px(3d ¹ 4d ²	6 22 47.88 Ti Titanium 28102 peperan	23 58.942 V Vanadium 26112 pxpa3a2	24 51.996 Cr Chromium 24 121 (k)24 621	25 54.938 Manganese 28 122 pega5a2	26 55.845 Fe Iron 28.542 Jacobel	27 58.933 Co Cobalt 28152 pda?a?	28 58.693 Ni Nickel 24.162 (sca4a)	29 63.546 Cu Copper 28 181 pcod ¹⁶ 81	30 65.38 Zn Zinc 24.992 peter%as ²	31 69.723 Gallium 24.183 pkost*fastast	32 72.631 Ge Germanium 24 18 4 petar%as2ap2	33 74.922 As Arsenic 28.185 prost ¹⁰ 52 ¹⁰ 51	34 78.971 Selenium 24.145 jetat Walder	35 75.904 Bromine 24.167 Mod ¹⁵ Broad	36 84.796 Krypton 28 183 jaga/Ru2a/4
5	37 BLASS Rb Rubidium 28 19 61 1 Street	38 87.62 Str Strontium 28 18 8 2 80 fb/	39 88.90 Y Yttrium 281992 maa1a2	40 91.224 Zr Zirconium 2010 102 musta2	41 92.906 Nb Niobium 28 19 121 marful	42 95.95 Mo Molybdenum 2818131 pouefoil	43 98.967 TC Technetium 2619141 2014/52	44 501.07 Ru Ruthenium 28 18 15 1 10 0007 0 1	45 102.906 Rh Rhodium 2815 161 marfa1	46 105.42 Pd Palladium 26 18 18 004418	47 107.868 Ag Silver 2818181 10541921	48 112.414 Cd Cadmium 28 10 182 28 10 182	49 114.818 Indium 2818183 2004/10-001	50 118.711 Sn 710 23.19.194 10.00	51 121.760 Sb Antimony 2618 195 2648 195 2648 1955	52 127.6 Te Tellurium 28 18 18 8 10100 ⁽¹⁾ C2 ³ C4 ⁴	53 126.304 I lodine 2813 187 www.ffb/bol	54 131.249 Xenon 28 19 185 1946/95/168
6	55 132.905 Cs Cesium 14 10 11 11 14 10 11	56 137.328 Ba Barium 2418 1992	57-71	72 178.49 Hf Hatnium 28 19 32 10 2 tour (fueloc)	73 180.948 Ta Tantalum 28 1812 11 2 1000 ¹⁰ 10 ¹⁰ 2	74 183.84 W Tungsten 28 1122 1000/14/462	75 186.287 Re Rhenium 28 1832 1832 1842 1832	76 190.23 OS Osmium 281621142 1000/1626462	77 192.217 Ir Irdium 28 19.32 15.2 1900/16/02	78 195.085 Pt Platinum 281822171 mulficites1	79 196,967 Au Gold 24 10 32 10 1 (tube) ¹⁵ 64 ¹⁵ 651	80 200.592 Hg Mercury 251822162 tourf4uf9u2	81 204.383 TI Thallium 28 98.22 98.3 mag/64/182/261	82 207.2 Pb Lead 281932184 (real/ballocited	83 208.980 Bi Bismuth 23 19 12 19 5 man th adhadhad	84 (256.982) Po Polonium 2418.32 18.6 Totul ¹⁶ 4u ¹⁰ 8u ² 0u ⁴	85 209,987 At Astatine 2 & 1 & 2 & 37 December 1 & 2 & 37 December 1 & 2 & 37	86 222.018 Radon 18 19 22 19 8
7	87 223.020 Fr Francium 2918.32 1861 Brith ¹	88 226.825 Ra Radium 2619.52 1882 Bitb2	89-103	104 (201) Rf Rutherfordium 26195252192 masil4ae ² 15 ²⁵	105 [282] Db Dubnium 28185252112 (Hel5/Mad 3522	106 [266] Sg Seaborgium 26 19 52 122 (rets) ¹⁴ 64 ¹ 5 ²¹	107 [264] Bh Bohrium 28 18 52 52 152 Bross ¹⁴ 865 ⁵ 76 ²⁴	108 [260] Hs Hassium 26 19 32 32 142 pect/466 ⁶ 72 ²⁴	109 [268] Mt Meitnerium 28 18 52 52 15 2 mets/146/7n2*	110 [209] DS Darmstadtium 26105232162 pegs/4e/hs ²⁴	111 (272) Rg Roentgenium 28 18 32 32 17 2 (hep)(46e ³ h ²)	112 (277) Cn Copernicium 28 18 52 32 182 pht144e ⁽³⁾ h ²⁴	113 unknown Nihonium 28 18 32 32 18 5 Reds ¹⁶ 84 ¹⁰ 72 ² 7 ¹¹	114 [2001] Fi Rerovium 28 18 52 52 184 meter 1464 (1972) 27 184	115 unknown Mc Moscovium 28 18 32 32 18 5 peoplear (0.2.2.2)	116 [294] Lv Livermorium 2618 52 52 186 (http://doi/10.121p.0*	117 unknown TS Tennessine 21 18 32 32 18 7 m-cs/14/2012/32	118 unknown Og Oganesson 2818 52 12 188 megri4ed Ny2 12 ⁴⁹

Lanthanide Series	57 138.905 La Lanthanum 28 18 18 92 30650 ¹ 87 ²	58 140.116 Ce Cenum 18192142 poerfuite?	59 140.908 Pr Praseodymium 24182182 2848 ² 62 ²	60 144,243 Nd Neodymium 38,18,22,8,2 yearles ²	61 144.913 Pm Promethium 28182582 DH04562	62 158.36 Semarium 28 18 24 82 pourfer ²	63 151.964 Eu Europium 75158242 1664762	64 157.25 Gd Gadolinium 2819.55 82 pice?si 82	65 158.925 Tb Terbium 28.9027.82 (84/4 ⁹ 6 ²	66 162,500 Dy Dysprosium 261128.83 Dicat ¹⁹ 66 ²	67 164.930 Ho Holmium 14 16 29 8 2 (5604 ¹¹ 67	68 167.259 Erbium 2819.082 pourtier	69 168.934 Tm Thulium 11 19 21 8 2 (8441 ¹⁰ 67 ²	70 173.855 Yb Ytterbium 2418.52.82 Keat ¹⁴ 62 ²	71 174.967 Lu Lutetium 24 18 32 32 page 454 52 page 454 52
Actinide Series	89 227.828 Actinium 2618 121892 1906(¹ 3) ²	90 252.038 Th Thorium 2016 22 16 102 19/00/25/2	91 231,036 Pa Protactinium 2616 22 0042 00(9 ² 00 ² h) ²	92 238.029 U Uranium 2.6 10 22 1 02 900/46(¹)/ ²	93 237,048 Neptunium 2818,122322 38,0546(%)	94 244.064 Putonium 26 19 22 260 26 29 27 20	95 243.061 Am Americium 2016.12.25.02 18:09 ² 15 ²	96 247,870 Cm Curium 28 19 32 25 92 8929 ⁷ 9(¹); ²	97 247.070 Bk Berkelium 24 18 12 27 8 2 (MeS) ⁰ /1 ²	98 251,080 Cf Californium 2 6 16 2 26 2 BAB(¹⁰ 1) ²	99 (254) Es Einsteinium 28 18 12 28 82 (849 ¹⁰ 3) ²	100 257,895 Fm Fermium 28 18 32 3092 38 65/12/j2	101 258.1 Md Mendelewium 2878 1221 82 pkge ¹⁰ 52	102 255.101 Nobelium 2619 32 22 52 peoplity2	103 (262) Lr Lawrencium 2 6 16 32 32 82 (64974673) ²
	A M	kali etal	Alkaline Earth	Transition Metal	Basic Metal	MetaB	oid Nor	metal	Halogen	Noble Gas	Lanthanic	le Actin	ide		

Contraction of Street, Street,

THE UNITED NATIONS PROCLAIMS THE INTERNATIONAL YEAR OF THE PERIODIC TABLE OF CHEMICAL ELEMENTS

28 December 2017

August 1 is Earth Overshoot Day

EARTH OVERSHOOT DAY: AUG. 1, 2018

If we could postpone the Overshoot Day of 4,5 days a year, we could reach balance 0 within the year 2050. What can we do?

- Rationalize the uptake of non-renewable resources: minerals and metal ores, fossil fuels (coal, petroleum, natural gas), and minimize wastes
- **Repair and reuse as much as possible**
- Properly recycle urban waste

.

Elements widely used in energy pathways

N.B. Position on the time axis is indicative only

Who is «clearing» the periodic table?

1]		R	emainin	ig years												2
н			u	ntil depl	etion o	F											He
1.00794			k	nown re	eserves												4.002602
3	4		(ba:	sed on cur	rent rate	of						5	6	7	8	9	10
Li	Be		_	extract	tion)	В	С	N	о	F	Ne						
6.941	9.012182	5-50 years											12.0107	14.00674	15.9994	18.99840	20.1797
11	12			50-100	years		13 14 15 16 17										18
Na	Mg			100-500	years							Al	Si	Р	S	Cl	Ar
22.98977	24.3050		26.98153 28.08												32.066	35.4527	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
ĸ	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.0983	40.078	44.95591	47.867	50.9415	51.9961	54.93804	55.845	58.93320	58.6934	63.546	65.39	69.723	72.61	74.92160	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	- Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	100	Xe
85.4678	87.62	88.9085	91.224	92.90638	95.94	(98)	101.07	102.9055	106.42	107.8682	112.411	114.818	118.760	121.760	127.60	126.9044	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La *	Hf	Та	W	Re	Os	 	Pt	Au	Hg	ा।	Pb	Bi	Ро	At	Rn
132.9054	137.327	138.9055	178.49	180.9479	183.84	186.207	190.23	192.217	195.078	196.9665	200.59	204.3833	270.2	208.9804	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Ac‡	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rq	Uub	Uut	Uuq	Uup	Lv	Uus	Uuo
(223)	226.025	(227)	(257)	(260)	(263)	(262)	(265)	(266)	(271)	(272)	(285)	(284)	(289)	(288)	(292)		

	58	59	60	61	62	63	64	65	66	67	68	69	70	71
Lanthanides *	Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
	140.9077	144.24	(145)	150.36	151.964	157.25	158.9253	158.9253	162.50	164.9303	167.26	168.9342	173.04	174.967
	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Actinides ‡	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.0381	231.0289	238.0289	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

What will we finish first?

UE Critical Raw Materials Third review

Critical Raw Materials													
Antimony	Fluorspar	LREEs	Phosphorus										
Baryte	Gallium	Magnesium	Scandium										
Beryllium	Germanium	Natural graphite	Silicon metal										
Bismuth	Hafnium	Natural rubber	Tantalum										
Borate	Helium	Niobium	Tungsten										
Cobalt	HREEs	PGMs	Vanadium										
Coking coal	Indium	Phosphate rock											

European Commission, Report on Critical Raw Materials and the Circular Economy, 16/01/2018

REE (Rare Earths Elements)

REE (Rare Earths Elements)

PGMs, Platinum Group Metals

2005-2016 Keith Enevoldsen elements.wlonk.com Creative Commons Attribution

The EC criticality methodology

Economic importance

Economic importance and supply risk results of 2017 criticality assessment

UE Critical Raw Materials (2017)

Why a material becomes critical?

1. Low abundance on Earth's crust

EuChemS

European Chemical Society

This work is licensed under the Creative Commons Attribution-NoDerivs CC-BY-ND

Abundance of some chemical elements on the Earth's crust (ppm)

Alluminio	84.149	Niobio	8
Ferro	52.157	Torio	5,6
Magnesio	28.104	Arsenico	2,5
Sodio	22.774	Stagno	1,7
Titanio	4.136	Uranio	1,3
Manganese	774	Tungsteno	1
Fosforo	567	Iodio	0,71
Bario	456	Tantalo	0,7
Zolfo	404	Lutezio	0,3
Stronzio	320	Antimonio	0,2
Cromo	135	Cadmio	0,08
Zinco	72	Argento	0,055
Rame	27	Mercurio	0,03
Cobalto	26,6	Palladio	0,0015
Nickel	26,6	Platino	0,0015
Lantanio	20	Oro	0,0013
Litio	16	Rutenio	0,00057
Piombo	11	Iridio	0,000037

2. Deposits are localized in one or very few countries

Figure D: Main EU suppliers of CRMs (based on number of CRMs supplied out of 37), average from 2010-2014

Contribution of primary global suppliers of critical raw materials, average from 2010-2014

The rare earth crisis

Metal prices development during the last 10 years for selected REE (Metal-pages, 2016). 29

As Rare Earth Fell, So Did Molycorp Mining company fate tied to neodymium prices

■ China Neodymium Metal Market Price Shanghai (R1) ■ Molycorp Inc (L1)

3. The extraction method is dangerous and/or produces pollution

Argentina, cyanide spill caused the pollution of five rivers

acids from a copper mine

fishes killed by a cyanide spill

Mining town of Norilsk (Russia)

Production of 35% Pd, 25% Pt, 20% Ni, 10% Co of the world

Rare Earth Production Comes With Toxic Waste

Mountain Pass mine (USA)

Documentary by Guillaume Pitron, Serge Turquier (2012) https://www.youtube.com/watch?v=C9SDUmEZZxk

The hitch-hikers

Schematic representation of the routes from ore to elements described in this handbook, indicating, primary versus those produced as co- or by-products (adapted from Hagelüken & Meskers, 2010).

* Lanthanides	La 75	Ce 60	Pr 41	Nd 41	Pm	Sm 38	Eu 100	Gd 63	Tb 63	Dy 100	Ho 63	Er 63	Tm 88	Yb 88	Lu 63
•• Actinides	Ac	Th 35	Pa	U 63	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	ſ

Demand Surge

Global metals and materials demand from EV lithium-ion batteries

Bloomberg

ELEMENTS OF A SMARTPHONE

ELEMENTS COLOUR KEY: 🔴 ALKALI METAL 🛑 ALKALINE EARTH METAL 🔶 TRANSITION METAL 🌑 GROUP 13 🜑 GROUP 14 🜑 GROUP 15 🜑 GROUP 16 🜑 HALOGEN 🌑 LANTHANIDE

Cu

66

Dy Dysprosium

Nd

Pr

Gd

Lead

iseodymiur

OELECTRONICS

65

Tb

SCREENO

Si

Silicon

K

La

Lanthanum

Eu

Europium

Tb

Terbium

Dv

Dysprosium

AI

Aluminium

Ο

Oxygen

59

Pr

raseodymium

Gd

adolinium

Indium tin oxide is a mixture of indium oxide and tin oxide, used in a transparent film in the screen that conducts electricity. This allows the screen to function as a touch screen.

The glass used on the majority of smartphones is an aluminosilicate glass, composed of a mix of alumina (Al₂O₂) and silica (SiO₂). This glass also contains potassium ions, which help to strengthen it.

A variety of Rare Earth Element compounds are used in small quantities to produce the colours in the smartphone's screen. Some compounds are also used to reduce UV light penetration into the phone.

Copper is used for wiring in the phone, whilst copper, gold and silver are the major metals from which microelectrical components are fashioned. Tantalum is the major component of micro-capacitors.

Nickel is used in the microphone as well as for other electrical connections. Alloys including the elements praseodymium, gadolinium and neodymium are used in the magnets in the speaker and microphone. Neodymium, terbium and dysprosium are used in the vibration unit.

Pure silicon is used to manufacture the chip in the phone. It is oxidised to produce non-conducting regions, then other elements are added in order to allow the chip to conduct electricity.

Tin & lead are used to solder electronics in the phone. Newer leadfree solders use a mix of tin, copper and silver.

Tin

BATTERY O

The majority of phones use lithium ion batteries, which are composed of lithium cobalt oxide as a positive electrode and graphite (carbon) as the negative electrode. Some batteries use other metals, such as manganese, in place of cobalt. The battery's casing is made of aluminium.

Magnesium compounds are alloyed to make some phone cases, whilst many are made of plastics. Plastics will also include flame retardant compounds, some of which contain bromine, whilst nickel can be included to reduce electromagnetic interference.

© COMPOUND INTEREST 2014 - WWW.COMPOUNDCHEM.COM | Twitter: @compoundchem | Facebook: www.facebook.com/compoundchem Shared under a Creative Commons Attribution-NonCommercial-NoDerivatives licence.

One 3-MW turbine contains

- 335 tons of steel
- 4.7 tons of copper
- 1,200 tons of concrete (cement and aggregates)
- 3 tons of aluminum.

- 2 tons of rare earth elements
- zinc
- molybdenum

Source: (NW Mining Association)

5. Recyclig is absent, insufficient or difficult

End-of-life recycling input rates (EOL-RIR) in the EU-28 (CRMs and non-CRMs)

Н > 50% He 1% > 25 - 50% > 10-25% С Ν 0 F* Ne Li Be B* 0% 0% 1% 1-10% < 1% CL Na Mq P* Ar Si S Al 13% 12% 0% 17% 5% Br Kr K* Ca Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se 0% 19% 44% 21% 31% 35% 17% 0% 12% 34% 31% 0% 2% 1% Rb Т Xe Sr Y Zr Ru Pd Cd Sn Sb Te Nb Mo Tc Rh Ag In 31% 0% 30% 11% 9% 9% 55% 0% 32% 28% 1% Cs Rn Po At Ba Hf W Re 0s Pt тι Pb Ta lr. Au Hq Bi La-Lu¹ 20% 1% 1% 42% 50% 14% 11% 75% 1% 1% Fr Db Cn Ra Rf Sg Bh Hs Mt Ds Rg Uut Fl Uup Lv Uus Uuo Ac-Lr²

End-of-life recycling input rate (EOL-RIR) [%]

¹ Group of Lanthanide	La 1%	Ce 1%	Pr 10%	Nd 1%	Pm	Sm 1%	Eu 38%	Gd 1%	Tb 22%	Dy 0%	Ho 1%	Er 0%	Tm 1%	Yb 1%	Lu 1%
² Group of Actinide	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Aggre- gates	Bento- nite	Coaking Coal	Diato- mite	Feldspar	Gypsum	Kaolin Clay	Lime- stone	Magne- site	Natural Cork	Natural Graphite	Natural Rubber	Natural Teak Wood	Perlite	Sapele wood	Silica Sand	Talc
7%	50%	0%	0%	10%	1%	0%	58%	2%	8%	3%	1%	0%	42%	15%	0%	5%

* F = Fluorspar; P = Phosphate rock; K = Potash, Si = Silicon metal, B = Borates.

THE RECYCLING RATES OF SMARTPHONE METALS

COLOR KEY:

🔴 < 1% RECYCLE RATE 🛑 1–10% RECYCLE RATE 🥘 10–25% RECYCLE RATE 🔵 25–50% RECYCLE RATE 🙆 > 50% RECYCLE RATE 🙆 NON-METAL (OR RECYCLE RATE UNKNOWN)

SCREEN O **O ELECTRONICS** TOUCH: INDIUM TIN OXIDE WIRING AND MICROELECTRONICS Mainly used in a transparent Copper is used for wiring, and for film over the phone's screen that microelectrical components along conducts electricity. This allows with gold and silver. Tantalum the screen to function as a touch is the major component in Та screen. microcapacitors. 0 -**GLASS: ALUMINA & SILICA** MICROPHONES AND VIBRATIONS DV Si Ν On most phones the glass is Nickel is used in the microphone aluminosilicate glass, a mix of and for electrical connections. aluminium oxide & silicon dioxide. Rare earth element alloys are used It also contains potassium ions, in magnets in the speaker and Nd Gd which help strengthen it. microphone, and the vibration unit. THE SILICON CHIP **COLORS: RARE EARTH METALS** Tb Pure silicon is used to manufacture La A variety of rare earth metalthe chip, which is then oxidized to containing compounds are used produce nonconducting regions. to help to produce the colors in Other elements are added to allow Dy a smartphone's screen. Some of Eu the chip to conduct electricity. Pr these compounds are also used to help reduce light penetration into the phone. Many of the 'rare CONNECTING ELECTRONICS Gd earths' occur commonly in the Sn Pb 0 Tin and lead were used in older Earth's crust, but often at levels too solders; newer, lead-free solders low to be economically extracted. use a mix of tin, copper and silver. **BATTERY O** CASING Magnesium alloy is used to make some phone Most phones use lithium ion batteries, composed cases, while many others are made of plastics, of lithium cobalt oxide as a positive electrode which are carbon-based. Plastics will also include and graphite (carbon) as the negative electrode. 0 flame retardant compounds, some of which contain Sometimes other metals, such as manganese, are used in place of cobalt. The battery casing is often bromine, and nickel can be included to reduce electromagnetic interference. made of aluminium. © COMPOUND INTEREST 2015 - WWW.COMPOUNDCHEM.COM | Twitter: @compo undchem | Facebook: www.facebook.com/compoundchem This graphic is shared under a Creative Commons Attribution-NonCommercial-NoDer ivatives licence.

Metal waste separation

	Metal	Recycle (%)	Energy saved (%)	CO ₂ saved (%)
26 For the second secon	Steel	42	60	58
Auminum 22.99	Aluminum	40	95	92
28 Nickel St.69 Coto	Nickel	60	90	90
29 Coper 20,55 20,	Copper	35	80	65
B2 Lead 20 2	Lead	74	98	99
50 Sn 10 187 Edd Park End End	Tin	75	98	99
30 Zinc 6.59 Kel but	Zinc	20	60	76

Losses in the recovery chain

- WEEE are not collected, everything ends in a landfill
- ***** WEEE are collected, but:
- Are stolen in municipal collecting points or during the following recycling stages
- Are legally exported in developing countries were recycling is not active
- Are collected for sham recycling

"Low-tech" gold recycling in Bangalore/India (photo by courtesy of EMPA, Switzerland)

When WEEE collection is active, there are losses

in recycling due to:

•Wrong separate collection

Losses in the mechanical treatment

•Technical limits for the recovery of metals from several alloys

•Miniaturization and use of strong glues in circuits

•Many plants recover only metals with have an established and profitable market

plastic ceramic gold silver platinum palladium copper aluminum nickel iron

Materials

recovered

Metals in waste

Industrial waste, car demolition, building, big equipments (mainly aluminum, iron, steel)

> WEEE categories in Italy

Urban waste (cans, metal containers, WEEE): a bit of everything, but are recovered mainly aluminum, iron, steel, copper, nickel, zinc, lead, and precious metals.

THE DARK SIDE OF THE SMARTPHONES

11 MILLION DEATHS

Conflict minerals clampdown

The Securities and Exchange Commission has ruled that U.S.-listed manufacturers such as Apple and Boeing must scrutinise the sources of four metals to make sure they don't help fund human rights abuses

ANATOMY OF A SMART PHONE

Blood in the Mobile (2010) a documentary by Frank Piasecki Poulsen, https://www.youtube.com/watch?v=Tv-hE4Yx0LU

"Kids in Congo are being sent down into mines to die so that kids in Europe and America can kill imaginary aliens in their living rooms or text each other" (Oona King)

Solutions?

a) Research of substitutes more easily available or of innovative technological solutions

The person behind the important revolutionary discovery in this battery industry is Mya Le Thai, a Vietnamese-born graduate student who is preparing to earn her Ph.D. at UCI.

b1) Search of new mines, recover mineral wastes of old ones, sift the oceans, ...

Map of CRM ore deposits in Europe

© BRGM, EuroGeoSurvey, 2017

Sources: Esri, GEBCO, NOAA, National Beographic, DeLorme, HERE, Geonames.org. and other contributors

b2) ... the Moon

WHY MINE THE MOON?

Water + .

There may be water on the moon brought there by asteroids during collisions. And we are in need of fresh water. NASA scientists found that in 37 aquifers of fresh water on the earth, 21 are past the sustainability point. [4]

as scandium and yttrium - used in modern electronics and mostly produced in China

Precious metals

Many precious metals are used in everything from jewelry to smartphones to cancer treatments. Iron, nickel and cobalt may also be found on the moon.

Helium-3

This element is rare on Earth, much more common on the moon and ideal for work in nuclear fusion. In recent years due to demand, the price of helium-3 can be as much as \$2,000 per liter.

b3) ... the asteroids

High Value Asteroid Materials

ASTEROID ELEMENTAL ABUNDANCE RELATIVE TO EARTH'S CRUST

1x

Potable Water Radiation Shielding Fuel

Agriculture Metallurgy

VOLATILES AND H₂O to fuel the growth of humanity into new frontiers

180x

810x

Refrigerant

INDUSTRIAL METALS to construct and sustainably service space platforms

Catalytic Converters LCDs

Cancer treatments

PLATINUM GROUP METALS to support demand growth on Earth

Despite desire to reduce dependency, one-in-four manufactured goods require PGMs.

b4) ...urban minig

Urban Mining Goal: Monetize urban waste streams in order to produce revenue, businesses and jobs.

c) Improve E-waste recovery and reuse

d) Get informed before buying.Prefer factories with more efficientdesign and ethical chain of supply

Design di lunga durata >

Buone condizioni di lavoro >

Materiali "fair" >

Riuso e riciclo >

This activity has received funding from the European Institute of Innovation and Technology (EIT), a body of the European Union, under the Horizon 2020, the EU Framework Programme for Research and Innovation

Improvement relative to no recycling

The least metal depletion, but also the second-highest rate of global warming potential (GWP, measured by CO_2 equivalent). A bit higher metal depletion than route 1, but with the lowest GWP The least desirable results, both in terms of metal depletion and GWP 75 PuzzlePhone is the long-lasting smartphone with three easy-to-change modules. Repair and customize your device easily - make it last and make it your own. PuzzlePhone is reliable, upgradeable, and repairable!

Need more power? Did you break your screen? Need a special module with extra sensors? All are easily replaced - by the user!

Brain

The Brain contains critical electronics: the CPU, GPU, RAM, memory, and cameras.

2 Spine

The Spine is the structure: the high-res display. Core spine elements will be available in a variety of sizes and materials. 3 Heart

The Heart contains the battery: it will be the enabler of secondary electronics and features chosen by the user.

76

Phonebloks: a phone that can be built like Lego

Phonebloks is a smartphone made up of separate parts that can be swapped and replaced like Lego so it lasts for ever and can be customised

A screenshot of Phoneblok's design featured in the video Photo: DAVE MOVIES

Long queues outside London Apple store as new iPhone X goes on sale

With prices starting at £999, it is the most expensive iPhone ever.

People queue outside the Apple Store on Regent Street, London, as the iPhone X goes on sale (Martyn Landi/PA)